All functions
|
computeLogLikelihood()
|
Compute the log-likelihood. |
copyLogProposals()
|
Initialise the vector of Metropolis-Hastings proposals. |
effectiveSampleSize()
|
Compute the effective sample size (ESS) of the particles. |
fitSpectraMCMC()
|
Fit the model using Markov chain Monte Carlo. |
fitSpectraSMC()
|
Fit the model using Sequential Monte Carlo (SMC). |
fitVoigtIBIS()
|
Fit the model with Voigt peaks using iterated batch importance sampling (IBIS). |
fitVoigtPeaksSMC()
|
Fit the model with Voigt peaks using Sequential Monte Carlo (SMC). |
getBsplineBasis()
|
Compute cubic B-spline basis functions for the given wavenumbers. |
getVoigtParam()
|
Compute the pseudo-Voigt mixing ratio for each peak. |
lsTamra
|
Surface-enhanced Raman spectram of tetramethylrhodamine+DNA (T20) |
marginalMetropolisUpdate()
|
Update all of the parameters using a single Metropolis-Hastings step. |
methanol
|
Raman spectrum of methanol (CH3OH) |
mhUpdateVoigt()
|
Update the parameters of the Voigt peaks using marginal Metropolis-Hastings. |
mixedVoigt()
|
Compute the spectral signature using Voigt peaks. |
resampleParticles()
|
Resample in place to avoid expensive copying of data structures, using a permutation
of the ancestry vector. |
residualResampling()
|
Compute an ancestry vector for residual resampling of the SMC particles. |
result
|
SMC particles for TAMRA+DNA (T20) |
result2
|
SMC particles for methanol (CH3OH) |
reWeightParticles()
|
Update the importance weights of each particle. |
serrsBayes
|
Bayesian modelling and quantification of Raman spectroscopy |
sumDlogNorm()
|
Sum log-likelihoods of i.i.d. lognormal. |
sumDnorm()
|
Sum log-likelihoods of Gaussian. |
weightedGaussian()
|
Compute the spectral signature using Gaussian peaks. |
weightedLorentzian()
|
Compute the spectral signature using Lorentzian peaks. |
weightedMean()
|
Compute the weighted arithmetic means of the particles. |
weightedVariance()
|
Compute the weighted variance of the particles. |